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Aktraet--This paper explores the application of linear stability theory to explain the onset of 
slugging. It is shown that the inviscid Keivin-Helmhoitz theory correctly predicts stability of a 
stratified flow only for very large liquid viscosities. In general, however, inviscid theory is in error 
because it ignores the destabilizing effect of liquid inertia. Good agreement is noted between the 
linear stability analysis and observations of the initiation of slugs in 2.54- and 9.53-cm horizontal 
pipes at superficial gas velocities less than 3.3 m/s. 

1. INTRODUCTION 

A transition from a stratified to a sPdg pattern in horizontal concurrent gas-liquid flow 
happens when a disturbance at the gas-liquid interface, which grows rapidly to block the 
cross-section of the conduit, is propelled violently downstream as a slug. The occurrence is of 
concern to the process industry since slugs cause oscillations in the flow rate and in the 
pressure, which can severely damage equipment. This paper explores the application of 
linear stability theory to explain the onset of slugging for flow in a rectangular channel and in 
a pipe, and uses it to examine the effects of liquid viscosity and conduit size on the 
instability. 

Theoretical predictions for the onset of slugging have been presented by a number of 
investigators, who applied classical Kelvin-Helmhoitz instability theory to ideal inviscid 
fluids. Slugs are pictured to form when the suction pressure generated over a wave by the 
Bernoulli effect is large enough to overcome the stabilizing influence of gravity. 

The use of inviscid Kelvin-Helmholtz instability theory implies that liquid inertia terms 
do not contribute to the instability, that forces causing instability are in phase with the wave 
height, and that shear stress terms are unimportant. 

For flow in a channel of height B, inviscid theory predicts the growth of infinitesimal long 
wavelength disturbances, provided the following relation holds: 

Vs~ ~/~]P pc >_a3/2, IX] 

where VsG is the superficial gas velocity and a, the void fraction, and Pc, PL, the densities of 
the gas and liquid phases. 

Wallis & Dobson (1973) performed transition studies in rectangular channels and 
concluded that [1] overpredicts the critical gas velocity by a factor of about two. They 
explained their data by extending Benjamin's (1968) work for liquid flow around a stagnant 
bubble to gas flow around a stagnant slug. This theory has not been widely accepted. 

In an earlier work, Kordyban & Ranov (1970) extended classical Kelvin-Helmholtz 
theory to finite amplitude waves in inviscid flow and obtained an instability criterion for 
channel flow. In order to evaluate this criterion, however, the wave number must be known 
and a relationship between wave amplitude and wave length formulated. Kordyban (1977), 
more recently, applied the inviscid Keivin-Helmholtz stability just to the crest of an existing 
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wave. The instability criterion is given as 

[2] 

where K, was determined from experiments to be 1.35. 
Taitel & Dukler (1976) applied the Kelvin-Helmholtz instability mechanism to a 

solitary wave of finite amplitude in pipe flow and arrived at the criterion 

Vs~ Po > K ~  r , [3] F=--~gD - P o  

where h is the height of the liquid and D the pipe diameter. Using qualitative arguments, 
they speculate that Ks can be estimated as 

K2 = 1 - h i D .  [4] 

Even though Taitel & Dukler included viscous terms to evaluate h i D  in their analysis of 
equilibrium stratified flow, the instability criterion, itself, was derived using inviscid fluid 
theory. 

Mishima & Ishii (1980) reexamined the analysis of Kordyban & Ranov (1970) and 
argued that the 1/2 factor needed in [ 1 ] can be obtained theoretically from an analysis using 
the concept of the fastest growing wave. There is some uncertainty in their argument, 
however, since their analysis shows that the wavelength that has the largest growth rate also 
requires the largest gas velocity to induce instability. In other words, a lower gas velocity 
could theoretically induce instability at wavelengths that do not grow as fast. 

This paper reexamines the growth of small amplitude Ion8 wavelength disturbances. The 
approach differs from classical Keivin-Heimholtz linear stability theory in that liquid phase 
viscous and inertia terms are included. Furthermore, the notion of an inviscid plug flow in the 
gas is abandoned so that shear stresses at the gas-liquid interface and the component of the 
pressure out of phase with the wave height are considered. The inclusion of these extra 
effects causes the wave velocity to be greater than the average liquid velocity at neutral 
stability instead of being equal to it, as would be the case for classical Kelvin-Heimholtz 
instability. The consequence of this is that inertia terms become destabilizing, thus causing 
the instability to occur at a lower gas velocity than would be predicted by [ 1 ]. The results of 
this analysis are compared to observations of the onset of slugging for air-water flow in 
horizontal 2.54- and 9.53-cm transparent pipes with lengths of 15.2 and 24.6 m, 
respectively. 

The method of analysis used in this paper is similar to approaches taken by Hanratty & 
Hershman (1961) and by Andreussi et al. (1983). These papers and a recent review article 
by Hanratty (1983) should be consulted for detai~s not presented here. 

2. VISCOUS INSTABILITY-CHANNEL FLOW 

(a) The  s tab i l i t y  re la t ions  

The system considered is a cocurrent flow of a gas and a liquid layer of height h in a 
rectangular channel of height B, inclined at an angle, 0, to the vertical as depicted in figure 1. 
Average liquid and gas velocities are defined as 

l£h 
Uo = ~ U dy,  [5] 
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I L n Udy,  [6] Uo B- h 

where u,U are local velocities and y is the distance from the bottom wall. The shear stresses 
at the channel walls and at the gas-liquid interface are designated as ~'s, 7wand r~. The goal 
of the analysis is to determine the conditions under which a small amplitude long wavelength 
sinusoidal disturbance introduced at the interface becomes unstable. 

Because the wavelength is considered to be very large compared to h, a shallow liquid 
assumption can be made whereby the local pressure in the liquid, p, varies in the y-direction 
only because of changes in hydrostatic head. If surface tension effects are neglected, this 
assumption can be expressed as 

P = P~ + PL g (h - y) sin0, [7] 

with P; being the gas pressure at the interface. The flow field in the liquid is described by the 
following integral forms of the mass and momentum balances: 

0--7 + (hUo) - o,  [s] 

o(h,,.____ 2 o h (OP, Oh I 
Ot + ~xx (hFu]) = - - -  + PL g sin0 ] + 1 (r, - rw) + gh cos0, [9] pL \ Ox ~x p~ 

where x is the coordinate in the flow direction and F is a shape factor defined as 

| L k 112 r - dy. [1o1 

Similar equations can be written for the gas phase if the wavvlength of the interfacial 
disturbance is also considered to be very long compared to (B - h). Therefore, the integral 
forms of the equations of conservation of mass and momentum are as follows: 

ah a 
- a t  + ~xx [ ( B  - h)  Uo] - 0 ,  [11]  

0 0 ~ r~] a-~ [(B - h) Uo] + ~ [(B - h) U~ 

[12] 

pc ~Tx + peg s , ne~x  - (r, + ra) + g ( e  - h) cos0, 

where Fc is the shape factor for the gas phase velocity profile. 
The flow is defined by h, ~o and Uo before a disturbance of the form 

h' =/~ exp i k (x - Ct) I13] 

MF 12:1-F 
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is introduced at the interface. The wave number k and the amplitude h characterizing the 
disturbance are real. The wave velocity C is complex, i.e. C ~ Ce + iCt. The undisturbed 
flow is assumed to be fully developed or to be varying so slowly in the x-direction that inertia 
effects in [9] can be neglected: 

__h[oejpL \o  . d h ) o x  1 0 "~x  + m g s m O - r -  + ~ (~, - ~w) + gh-cosO. ,oL 
[14] 

If the amplitude h is small enough a linear response is obtained whereby the disturbances 
in the velocity and stress fields are given by 

e 

' U . . . .  P i  u a a T W  TB T i 
7-  = --: = --=- - e x p i k ( x  - Ct) ,  [ 15] 
u .  U,, ~w ~B ÷, 1°, 

with the amplitudes, fi., Uo, ~w, ~a, "~,,/~, being complex and linearly dependent on/~. 
The substitution of [ 13] and [ 15] into iinearized forms of [8] and [ 11 ] gives the relations 

for ,3 and U.. 

a o ( c -  ~.) 
f i  , 

D. (u-. - c) 
- ( a -  fi)  " 

[161 

[171 

The substitution of [13], [15] and [16] into a linearized form of the liquid momentum 
balance gives the following two equations describing neutral stability (Ct - 0): 

"~.l - 2 - + F ~u.I 
pL,_=~ ~ + ~ + aLg sin0 , 

P L U a  
[18] 

A 

[19] 

The terms on the left side of [ 18] originate from the inertia terms in [9]. As will be shown 
later, the stress terms ~iL and ~wt can be neglected. Consequently [18] indicates that 
instability occurs when the stabilizing effect of gravity is counterbalanced by the destabiliz- 
ing effects of inertia and of the Bernoulli effect, represented by/~e//~. The magnitude of the 
inertia effects depends on Ce, which is defined by [ 19]. 

(b) Evaluat ion of[~i 

The substitution of [13], [15] and [17] into a linearized form of the gas phase 
momentum balance, [ 12], gives expressions for/~aR and/5 a. 

P,R pc [ c ~ ( ~ - l ) - r c ( u o  CRY --2 - - U .  ( a  - ~ )  P~R 
( a  -S_ h )  h 

- ( B - h )  g s i n 0 - ~  + ~jj, 
[20] 

(B--- h)  pck-(B-h) + + h / P c  k + " ( B - ~ i - k  -~x " 
[211 
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( c )  Evaluation o f  ~i and ~s 
Because of the assumption of a long wavelength disturbance the shear stresses are 

evaluated by using a pseudosteady state approximation, whereby the instantaneous stress is 
related to flow variables by equations derived for the undisturbed flow. 

~', - '/2 pal, (V, - CR) 2, 

• B - '/2 p~fB (U°) ~. 

[22] 

[23] 

The friction factorfB is given by the Blasius equation for a smooth surface, 

fB = f s  = 0.0665 Re~ I/4, [24] 

(d) 

by assuming 

with Rec = (B - h) Uo/v,. The friction factorf~ is affected by the small scale wave structure 
on the interface and therefore depends on the flow properties of the liquid. 

The following equations are derived from [22] and [24] by using procedures outlined by 
Hanratty (1983): 

- -  f, KaRe,) h J [25] 

"rae 2¥a 
• (B _-~-- ~,  [26] 

rll - r J l  - O.  [ 2 7 ]  

Evaluation o f  ~w and I" 
For cases in which the liquid is turbulent the shape factor for the liquid is approximated 

- o .  [28]  

*w - '/2 PLfwu2~, [291 

The wall shear stress is defined by 

with 

f w -  0.0665 Re~ ~/4. [ 3 0 ]  

From [15], [29] and [30] the following relations are derived: 

• ~ - o ,  [31]  

- 1.75 _--- - 2 . [32] 
/d o 

Lin (1984) has explored a more rigorous method for evaluating ~w and r for a sheared 
turbulent liquid, which involved the use of the van Driest mixing length relation. No 
significant difference was noted from the simple plug flow relation given above over the 
range of flow variables explored in this paper. 

Hanratty (1983) presents the following relations for the case in which the liquid is in 
laminar flow: 

2#LU a h P  
r w -  h 3 ' [33] 
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4 P p2 
r = ~ + ~-~ + 27--O' [34] 

with/3 = d p / d x  - ,otg cos0 and P - h 2 p / i z t u a .  Relations for ~w and r are obtained from 
[33] and [34] by making a pseudo-steady-state assumption: 

= - - - ~  - 2 - 2 /~' [35] 

T WI 

/, 

270 ~ -  

1 "~i, r ,  
-:- = 0 ,  [ 3 6 ]  

2A'  h 

3 SiR 
+ 15)(P + 3) + :P--~-=(2P + 15). 

Z p h  

[37] 

3. CONDITIONS FOR NEUTRAL STABILITY FOR 
TURBULENT-TURBULENT FLOW IN A CHANNEL 

The substitution of [20], [21], [25], [26], [27], [28], [31], [32] into [18] yields the 
following equation for neutral stability 

gBsinO (1  - - ~ ,  - 1 + - -  
0. [381 

g B s i n 0 p L a 3  /\ PL / ! 

Here VSG and PsL are the superficial velocities and a is the void fraction, a = ( B  - h ) / B ,  and 
r = r a  - 1 for turbulent flows. 

The first term in [38] represents the destabilizing effect of liquid inertia. The second is 
the destabilizing effect of gas phase pressure variations. The third is the stabilizing effect of 
gravity. For the case of C R / u .  = 1, liquid inertia effects vanish and [1] is obtained. It is seen 
that liquid inertia causes the transition velocity to be smaller. In order to estimate this effect 
[19] has to be used to evaluate C R / u . .  

The substitution of [20], [21], [25], [26], [27], [28], [31], [32] into [19] gives 

3+ 3~i+(I +~)+-~-~xx]+~+ 2 -I 
9 = f w d x  , [39] 

_ ( ) 2 d h  Ua I - -  a 
2 -- 0.25 -- r,. + xp 1 + + - - -  

a f w d x  

where 

~B 
qb = _--- ~" ( f f f f , ) - ' ,  [40] 

Ti 

R--~L aZ 
- -  ~ .  [ 4 2 ]  

q~ = ~ OReL 

It is noted that terms involving d h / d x  are small so the following equation is applicable both 
for a fully developed flow and for a flow with a slight hydraulic gradient: 

3 + 3 (7i ÷)(1 + 0 )  +7 i  ÷ 2 - 1 
c .  
- -  - [431 

u" 1.75 - ¥~+ • 1 + 
O/ 
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From [22], [24], [29], [30], 

~uL/ " [44] 

As suggested by Andreussi et al. (1983), the ratio of the friction factor for a wave roughened 
interface to that for a smooth surface can be approximated by 

f d f ,  = 1 + Bha +, [45] 

where he + = hUE/oa, with U* - (¢,/pa) ~/2. From [45], 

~ / ~ :  1 [46] 
Z/f, 

From [43], [44], [46] it is seen that Ce/u,, is a function ofa, fd f , ,  Uso, OSL, Po/P,, uO/uL. 
The term f,./f, can be approximated by [45] and all the terms except a are defined by the 
operating conditions for the channel. In general, measured values of a should be used. 
However, for the case in which the flow is fully developed a relation between a and the other 
flow variables can be derived. For this case ( d h / d x  - 0) it follows from [ 14] that 

(pL - P~I 2 gB (1 - 6) 3 cos0 1 + 

¥i + = , [47] 

withfw given by [30]. The elimination ofi~ + between [44] and [47] gives a relation between a 
and VSL, VSG- 

For a fully developed horizontal flow (0 - a-/2), [44] and [47] give the following relation 
between VSG/VSL and a: 

[48] 

Equation [38] then gives the following condition for neutral stability if [48] is used to 
eliminate Vsc/ VSL : 

, °  
"PL --- PG Ka3/2' [49] 

with 

[so] 

From [47], [48] and [43] it is found that CR/uo, and therefore K, is a function of a , f J f ,  and 
fluid properties for a fully developed flow. 

Figure 2 is a plot of calculated neutral stability conditions for a fully developed air-water 
flow (Pc/PL ffi 1.12 x 10 -3, ua/uL - 16.1). It is noted that the predicted critical Vsc are much 
smaller than those given by inviscid Kelvin-Helmhoitz analysis, [ 1 ]. 

Figure 3 presents the calculated transition for the fully developed turbulent-turbulent 
case in the more familiar Mandhane coordinates of VSL VS Vso for the case of a channel with 
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Figure 2. Neutral stability conditions for fully developed horizontal air-water flow in a channel. 

B - 2.54 cm. Equation [48] was used to calculate VSL from ~ and Vs~ for the inviscid 
Kelvin-Helmholtz prediction. Again it is seen that for fixed VsG, the predicted transition 
occurs for lower values of VSL than predicted by the inviscid Kelvin-Helmholtz theory. 

4. EFFECT OF LIQUID VISCOSITY ON NEUTRAL STABILITY IN A CHANNEL 

(a) Stability equations for a turbulent gas-laminar liquid flow 
The influence of liquid viscosity on stability for a turbulent-turbulent flow is weak. 

However, flows with very large liquid viscosities would involve a laminar liquid flow. More 
interesting effects of liquid viscosity are obtained by examining the stability of a turbulent 
gas-laminar liquid. 

The substitution of [20], [21], [25], [26], [27], [35], [36], in [18] gives the following 
neutral stability condition: 

, ,o i ( " ' - " ° I -  o. [51] 
gBsinO(l - a) 3 + gBsin---------OpLa 3 \ PL / 

[521 

It is noted that this is very similar to the neutral stability condition for a turbulent-turbulent 
flow, with Y and I 'e /h  defined by [34] and [37]. 

An examination of [51 ] reveals two effects of an increase in viscosity. For a fixed VSG and 
Or, VSL for the undisturbed flow will decrease with an increase in liquid viscosity (see [57]). 
From this consideration, the second term in [51 ] would suggest a transition at a smaller value 
of VSL. However, a smaller VSL reduces the destabilizing effects of inertia given by the first 
term in [51] and this tends to counterbalance the above effect. For very large viscosities 
inertia effects will be negligible and [ 1 ] will define neutral stability. 

The following equation for Ce/uo is obtained from [19], [22], [23] for a laminar liquid 
by using [33]-[37] and the assumption of a smooth surface (fdf~ - 1): 

- ~ - ~  + 1 + 6 ~,-÷ + ~ i  ÷ 3 - 1 [ 5 3 ]  
uo 9 . ' 
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Figure 3. Effect of liquid viscosity on calculated neutral stability for fully developed horizontal 
channel flow with B - 2.54 cm. 

p _ 
1 [541 

+ (71 + - 1)-"  

An expression can be derived for 7~ + from [14] and a similar momentum balance for the gas 
phase, By making use of [22] and [33], it is found that 

7-7=1 ( 1+ (1 + 4)) 1-ot)a + O.---b-~/p-~G) ~ " ' - ~ ) ~ ' ~ "  ) 2  [pL~/I-a\/V~\-'/VsGB\-I/'I._~a) cosO. [55] 

The substitution of [53], [54], [55] into [51]-[52] gives the neutral stability in terms of 
VSL, VSG, a and fluid properties. 

Using [14], [22] and [33], the following relation between a, VsG and VSL can be 
obtained: 

413 -a a [ l + _ _ p t ( F s ~ B / ' / ' ( F ~ / - '  ¢t3e°s#] 
P~ ~-"~-'c / \ ' ~ /  0.0665j 

4 PL 
1 

0.0665 Pc 

For the case of a horizontal flow, [56] simplifies to 

VSL -- ~., V ~  5 e3/41py 4, 
PL 

oo 

~ - 6 0 . 1 5 ,  a ] +3t-"'~JJ(p-'~L) 

[56] 

[57] 

[ 5 8 ]  



88 p.Y. LIN and T. J. HANRATTY 

By substituting [57] into [51] the following equation is obtained for neutral stability of a 
fully developed horizontal laminar liquid: 

VSG . , /  P_.9 K~ a~/2 [59] 
g ~  ~/PL Pc 

[60] 

For large vL, Ks ~, 1 and the neutral stability condition reduced to [ 1 ]. 
The influence of viscosity on the calculated neutral stability curve is illustrated in figure 

3 for a fully developed horizontal turbulent gas-laminar liquid. The calculations were made 
for air and liquids of different viscosity flowing in a channel with B = 2.54 cm. It is noted that 
over the range of 1 to 100 cp liquid viscosity is having a mild effect on the neutral stability. 
This is because of its counterbalancing influence on a and on the liquid inertia. However, as 
the viscosity exceeds 500 cp the effects of the liquid inertia term in [51 ] become vanishingly 
small. Stability is defined by [ 1 ] and the critical VSL is more strongly affected by increases of 
liquid viscosity. 

5. C O M P A R I S O N  O F  T H E  L I N E A R  S T A B I L I T Y  A N A L Y S I S  W I T H  
O B S E R V E D  T R A N S I T I O N S  T O  S L U G  F L O W  

The principle goal of this paper was to see whether a linear stability analysis of the type 
presented here can explain the observed transition to slug flow. The equations developed 
have been used successfully to explain the transition to roll waves (Hanratty, 1983) on thin 
liquid layers (large o0. Consequently, it is concluded that in such cases the unstable 
infinitesimal wave grows to a large amplitude wave having a steep front and a gradually 
sloping back. The main difference in the work presented here is that the analysis is extended 
to small values of a. The motivation is the possibility that for small ot the unstable 
infinitesimal wave will grow sufficiently to block the pipe cross-section and form a slug. The 
stability theory might, therefore, describe the asymptotic behavior of the slug flow transition 
for small c~. 

There is some encouragement for this type of reasoning from recent experiments carried 
out by Lin (1984). These were conducted in a 2.54-cm diameter pipeline with LID - 600 and 
in a 9.53-cm pipeline with L/D = 260. At gas velocities greater than about 3.3 m/s  and at 
sufficiently high liquid velocities the formation of a slug was observed to occur by the 
coalescence of roll waves. However, for gas velocities less than this coalescence did not 
appear to explain slug formation. Consequently it was decided to compare Lin's observations 
at VSG < 3.3 m/s  with the stability calculations presented in this paper. 

The stability analysis presented in the previous sections for a rectangular channel i s  
developed for a circular pipe in the appendix. Calculated results from this analysis are 
compared with Lin's experiments in figures 4 and 5. 

At low gas velocities, hydraulic gradients in the liquid exist even at LID ~ 600 and with 
the pipe carefully levelled. It is therefore more accurate to compare experiments with 
calculations using measured values of liquid film thickness. This is done in figure 4 where 
actual measured values of h/D at transition are plotted against Vscp~/'/(gDpL)'/2 for air and 
water. 

It is noted that the experiments agree with the stability theory in that no effect of pipe 
diameter is seen in such a plot. Agreement between the experiments and the stability 
calculations is obtained iffdf~ is assumed equal to 2.0. This is a reasonable assumption for 
air-water flow in this range of h/D (Andritsos 1985). 

A comparison of the calculations for f d f ,  = 1.0 with the conjecture of Taitel & Dukler 
(1976), represented by [3] and [4], is also presented. The good agreement would suggest that 
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[4] can be interpreted as a correction for the destabilizing effect of liquid inertia for 
air-water flow. 

Figure 5 compares Lin's measurements with stability theory (with fdfs  - 2.0) in a 
Mandhane plot. This plot clearly illustrates the success of figure 4 in accounting for the 
effect of pipe diameter. It is noted that for VsG > 7 m/s for the 9.53-cm pipe (3 m/s for the 
2.54-cm pipe) the stability calculation corresponds to an observed transition to roll waves, 
and not to slug flow. Larger values of VSL than predicted by the stability analysis are needed 
to initiate slugs in this range of gas velocities. 

6.  C O N C L U S I O N S  

Inviscid Kelvin-Helmholtz theory incorrectly predicts the stability of stratified gas- 
liquid flows in an enclosed duct to infinitesimal long wavelength disturbances. This is 
because viscous effects can cause the wave velocity to be quite different from the value 
predicted by inviscid theory. Because of this, the inertia of the liquid can be destabilizing. 
This provides a possible explanation of why inviscid Kelvin-Helmholtz theory predicts high 
critical gas velocities for the initiation of slugs in air-water flows. 

The comparison of viscous linear stability theory with observations of the initiation of 
slugs for air-water flow in 2.54- and in 9.73-cm horizontal pipes is good provided VsG < 3.3 
m/s. This supports the notion that for thick enough liquid layers slugs result from the growth 
of small disturbances. 

For liquid viscosities in the range of 1 to 500 cp viscous stability theory predicts a much 
more moderate effect of viscosity on the critical VSL than what is predicted by inviscid 
Keivin-Helmholtz theory, as has been suggested by Mandhane et al. (1974) and by 
Weisman et al. (1979). However, at very large liquid viscosities inertia effects of the liquid 
film are negligible and the same stability criterion is obtained from the viscous and inviscid 
theories. 

The most widely used correlation to predict the initiation of slugs is the correction to 
Kelvin-Helmholtz inviscid theory introduced by Taitel & Dukler, [4]. This correction is 
found to account correctly for the effects of inertia for an air-water flow. However, this 
equation does not agree with viscous stability for liquids other than water since the correction 
for inertia is a complicated function of fluid viscosity as well as of h/D. 
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h, hL 
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NOMENCLATURE 

cross-sectional area 
channel height 
wave velocity 
pipe diameter 
function of (h/D) in [3] 
friction factors 
interracial friction factor assuming a hydraulically smooth interface 
dimensionless superficial gas velocity defined in [3] 
acceleration due to gravity 
height of liquid film 
dimensionless height of conduit occupied by gas, hU~/vc 
wave number 
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K, KI, K2, Kt 

L 
p , P  

i, 
P 

Ret, Rec 

S 
t 

u 

U 
vc 

em, rSL 

x 

Y 

-y 

F 
0 

p 

p 
TIt, T i ,  Tw 

4) 

f~, f~p 

Subscripts 
d 

A 
B 
G 
i 
I 
L 
R 
S 
w 

Superscripts 
t 

correction factors to inviscid Kelvin-Helmholtz solution defined in [50], [2], 
[3] and [59], respectively 
pipe length 
local pressure in liquid and gas phase, respectively 
dp/dx - PLg sin0 

Reynolds numbers: u,h/vL and Uo(B - h)/o~, respectively for channel flow; 
uADdoL and UADc/oG, respectively, for pipe flow. 
round pipe geometrical parameters, defined in fgure 1 (A) 
time 
local velocity in liquid 
local velocity in gas 
gas velocity over the crest, [2] 
superficial velocities of the gas and liquid, respectively; defined as flow rate 
of the individual phase divided by total cross-sectional area of the conduit 
coordinate in direction of flow 
coordinate perpendicular to direction of flow, measured from bottom wall 
void fraction 
coefficient used in [45], approximately equals to 1 
angle defined in figure 1A 
velocity profile shape factor, [ 10] 
pipe inclination to the vertical 
coefficients defined in [58] and [A55], respectively 
viscosity 
kinematic viscosity 
density 
shear stresses 

m/z,', [40] 
(ReJf~) (0fd0Re£), [42] 
(dfw/d Ret) (ReL/fw) 
functions of (CR/uo), defined in [52] and [A51], respectively 

quantities spatially averaged over length as in [5] and [6] 
quantities spatially averaged over area, as in [A 15] and [A 16] 
quantities at gas side conduit wall 
gas phase 
at gas-liquid interface 
imaginary part 
liquid phase 
real part 
at gas-liquid interface, assuming interface is hydraulically smooth 
at liquid side conduit wall 

fluctuating component of perturbation 
time averaged quantities 
amplitude of fluctuating component of perturbation 
dimensionless round pipe geometrical quantities; made dimensionless with 
respect to D for lengths, and D ~ for areas 
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APPENDIX: VISCOUS INSTABILITY FOR A PIPE FLOW 

(a) Linearized mass and momentum balances 
The instability analysis can be extended to flow in a pipe by incorporating the 

appropriate geometric parameters. The special case of turbulent plug flow in both phases is 
used to simplify the analysis. The geometric parameters are defined according to figure 
1 (A). Terms AL and A~ are the cross-sectional areas occupied by the liquid and gas phases, 
respectively. The geometric quantities shown in figure 1 (A) are related as follows: 

= h / D ,  [ A I ]  

3' = 2 cos  -I (1 - 2 h ) ,  [A2] 

,~i = ~ f ~ -  (/~)2 [ A 3 ]  

= c o s - '  ( l - 21;) ,  [A4] 

S a  = lr - SL,  [ A 5 ]  

1 
,4L = ~ [SL - S,(l - 2/~)], [A6] 
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Figure I (A). Geometric parameters for pipe flow. 

11" 
"46 - ~ - AL. [A7] 

The quantities with superscript (~) are made dimensionless with respect to D, the pipe 
diameter, for lengths, and with respect to D ~ for areas. It is noted that all the parameters can 
be expressed as a function of h alone. 

If each geometric quantity is expressed as the sum of an averaged component and a 
fluctuating component, then the amplitudes of the fluctuations of these parameters can be 
expressed as 

,.~ - S,  2(1 - 2~) [A8] 

SL 2 

h Sj 
[A9] 

Sa SL 
h h 

[A10] 

[All]  

The neutral stability equations are developed in the same manner as for a channel flow. 
The shallow liquid assumption is also used, 

p -  P~ + p t ( h  - y)gs in# .  [A12I 

The liquid mass and momentum balances in a pipe can be written as 

OAt a(u,,AL) 
+ 0- [A13] 

at Ox 

a(uAAD O(u~AD 
a t  a x  

A (ap, .oh) 
pt ~-~x + pLg smO~ 

1 
+ - -  O' iSi  - "cwSt )  + A t g  cos  O. 

P t  

[AI4] 
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The subscript A for the liquid velocity indicates the quantity is averaged over the 
cross-section of the pipe. 

The amplitudes of the wave induced variations of ua and UA are related to the amplitudes 
of the area variations by using the mass balances of the two phases: 

u.4 = AL, [A 15] 
AL 

- - -  AL. [ A 1 6 ]  
A - AL 

The governing equations for neutral stability in nonfully developed pipe flow with inclination 
0 are as follows: 

[:c./2 ] l 
[A171 

and 

(~:- , , ,  - ,~,~.,,,,,) + [(~,-~¢,- ; . , , .¢~) 

+ k ~ , ~ ,  + cR 1 W = o. 

[A18] 

The pressure variation in the gas is again obtained from the gas phase momentum and mass 
balances by using a shallow gas assumption: 

~'~ = ~A L k ~  
[AI9] l 

UA(UA - c.,,) d.4~ '~L + ~, g~ 
P~ A~ + ,4L 

A - ~L ~ 7_ ~-5 d,, . o , , k t A  - -~,..) 

1 - - \ 
+ ~ (s,÷,~ + s : ,  + L s, + ~, g~)) • 

[A20] 

(b) Evaluation of÷w for pipe flows 
The liquid phase is modeled as a turbulent plug flow with the friction factor given by the 

Blasius equation. As suggested by Agrawal et al. (1973), the liquid is treated as in open 
channel flow. The hydraulic diameter, DL, is given by 

4AL [A21 ] 
DL SL 

and the Reynolds number, Re L, is defined as 

DLUA 
ReL - [A22] 

o L 

The wall shear stress and its fluctuation are given by 

1 
,-., = ~ p~f . ,  u,~ [A231 
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and 

[A24] 

The wall friction factor is given by 

fw = 0.0791 ReL -U4 . [A25] 

Hence 

Tw - ~d~d k f,, / 
[A26] 

From [A21] and [All through [A11], 

bL ,~ (&+~,) 
DL AL S'L + Sa 

[A27] 

Equations [AI5], [A22] and [A27] lead to 

~e~-\~ A=~ - ~ " 
[A28] 

The amplitude of the wave-induced variation of rw is obtained from [A24], [A15], 
[A26], [A28]: 

= 1.75 ~E] ~ A'L + "~ 

dfw ReL SL 

dReL fw SL 
[ A 2 9 ]  

÷w,  - 0 [A30] 
~w 

(c) Evaluation of{', and ~'B 
The interfacial shear stress can be expressed as 

~', - '/2 p , f ,  (UA - CRY. [A311 

Hence 

2 _ + =.  [A32] 
~, u ~ - c ~  f, 

Noting that 

/, ~ ReL 
f~ 0ReL fl [A33] 

and using [A16] and [A28] 

¥1 
-- + -  [A34] A-AL aReL 7, ~T~.4~ 
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and 

^ 

r,__/t i 0. [A35] 
7" i 

The amplitude term ~'m is obtained in a manner similar to [26] and [27]. In this case, 
however, the gas Reynolds number, ReG, and the hydraulic diameter, Do, are defined 
differently: 

4AG 
DG [A36] 

(SG + $3 

D~UA 
Re~ ~ [A37] 

PG 

Hence 

Do A, (Sa + ~)  [A38] 

and 

[A391 

At neutral stability 

r ,  A - ,4-----~ f ,  dRea Sa + -~ - 2 A - A-"L + 4 Sa + S,," [A401 

^ 

TBI 
- -  = 0 .  [A41] 
7a 

(d) Conditions for neutral stability 
The neutral stability equations for pipe flow are reduced to algebraic equations for the 

simple case considered, plug flows in the gas and liquid. The substitution of [A20], [A29], 
[A34], [A40] into [A18] gives 

CR Num 
= - -  [A42] 

u A  D e n  ' 

with 

+ I + Num 2 ~L -+-- + = -+-- S~ F, -+ , 2  - ~b 
AL Sz Ao \ A~ SL] 

+Sc~----~7~ 2 + + 1 + 7~ ÷S~ 
Ao % 4 ~-'GG + 

2 A L A , _  dAL 2 dAL 
+ - _  __ -G + 

f "4c "lo d~ fw dx 

[A431 
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D e n  = ~ L  ( 2  + ~ ' L )  - 1 + .-% ~ , +  ~k -=  
AL AL fw d~ 

[A44] 

It is noted that terms involving dAt/dx in [A43] and [A44] are small, so that, as an 
approximation, these terms can be dropped. 

The dimensionless interfacial stress, ~ + can be expressed in a form similar to that derived 
for channel flow: 

_+ [A45] 

The relation for parameter ~b derived for channel flow has to be modified for pipe flows to 
allow for pipe geometry. It is assumed that fd.f, is still of the same form as [45] so that 
0.~/Oh+ = (.~/h+) (fdfs - 1). Here, h + is defined as h + = hu*/oL with u* = x/-~rw/#L. From 
this it follows that 

. . . .  [ A 4 6 ]  
f~ dh + dReL dR-"eL d D :  

dD: dh + 

From the definition of the hydraulic diameter, DL, and the geometric relations [A1]- 
[All] ,  

dDL + d/)L 2 ~ _ (1 - 2~) 2 + ~- (1 - 2~) 
dh + = dh = ~ -~ Si SL SL 

[A47] 

From [A22] and [A25] 

Re[ "~5 = 25.28 (DL+) 2. [A48] 

Equations [A46] and [A48] give 

xI, = 0.875 ~ \ d/~ ] [A49] 

with dbL/d/~ given by [A47]. 
From [A45] and [49] it follows from [A42]-[A44] that CR/uA is a function of h, fdf , ,  

VsG, VSL, 0 and fluid properties, i.e. variables defined by the stratified flow model. 
The conditions for neutral stability are obtained t'rom [A17] using the relation for 

CR/uA, [A42], derived from [Al8]. Equation [AI7] can be expressed as a function of 
stratified flow variables by using [A19], [A20], [A29], [A30], [A34], [A35], and [A49]: 

V~L 

M~ 12 : I-G 
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1) 2  As,, 

The flow variables V~, VSL, h, and d,'iL/dx, are related by the solution of the undisturbed 
stratified flow model. 

For fully developed inclined plug flow, the momentum balances for the two phases are 

A OP - t. ~ x  ffi (rwSL -- r~Si) - pLAL g COS0, [A52] 

- A  OP ~ - ( r sSc  + riS~) - paAc g cos0, [A53] 

Making use of the Biasius formula forfw, [A52] and [A53] gives 

- [S£ 2COSOfDtVsLI ' / ' fVsLI-2(At l2](OS~ Si S i l - '  [A54] 
r~+ = ~ 0.0791\ u L ] ~"~] k"A] J~,,,la + A--~G + -'4L] " 

Eliminating 7~ + from [A45] and [A54] yields the solution to the stratified flow problem for 
fully developed inclined plug flow. 

For the case of a horizontal plug flow, # - 90 °, so that the superficial liquid and gas 
velocities, Vsc and VsL, are related by using [A45] and [A54]: 

VSL -- ~.~, VSG, [ A 5 5 ]  

where 

- , .  

":'" - ~7,+/Lp, Z\,~/ ~/ J~I " [A56] 

Equation [A50] and [A55] give the criterion of neutral stability in a pipe as 

: i  2 3 ,  -2 ~ - ,  le~ pc . 2 ^ A  /1,~ 

It is noted that the right-hand side of [A56] is a function of h, fdfs pipe diameter and fluid 
properties. 

1 ( - ~ ) 2 [  4 (1 - all (P~/ 
~. = ~ 1 + 3 \----~1] ~Z]" [A58] 


